If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-31y-60=0
a = 3; b = -31; c = -60;
Δ = b2-4ac
Δ = -312-4·3·(-60)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-41}{2*3}=\frac{-10}{6} =-1+2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+41}{2*3}=\frac{72}{6} =12 $
| Y=-3.4x+43 | | (15)+120=135)=z | | z=(15)+120(135) | | z=(15)+120135) | | z=(15)+120=135) | | z=(90+120)/15 | | z=(100+120)/15 | | z=(135+120)/15 | | z=(90-120)/15 | | z=(100-120)/15 | | z=(135-120)/15 | | z=(120-135)/15=1 | | 2n+4-n-3=n+1 | | 3x+53=1709 | | 100(15)+120=z | | 6n+7n=26 | | 3u(u+2)(u+1)=0 | | 5(x-48)^2=245 | | x-20+x+x+40=310 | | 3u(u+2)=0 | | -1/8=3w | | -6/5-1/5=-5/7x+2/7x | | -9=-8y | | x/x2+5x+6=0 | | 4y+2y=22 | | 6x+49=2080 | | z=135(15)+120 | | 135(15)+120=z | | z=(15)+120 | | 1+2x+-6x2+-2x3+x4=0 | | 4x-1(25-x)=70 | | s/6=-15 |